direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C5×C22.57C24, C10.1242- (1+4), C10.1722+ (1+4), C4⋊Q8⋊18C10, C22⋊Q8⋊20C10, C42⋊2C2⋊9C10, C42.55(C2×C10), C42.C2⋊12C10, C4.4D4.9C10, (C2×C10).383C24, (C4×C20).296C22, (C2×C20).684C23, (D4×C10).225C22, C23.26(C22×C10), C22.57(C23×C10), (Q8×C10).188C22, C22.D4.3C10, C2.16(C5×2- (1+4)), C2.24(C5×2+ (1+4)), (C22×C10).109C23, (C22×C20).463C22, (C5×C4⋊Q8)⋊39C2, C4⋊C4.35(C2×C10), (C5×C22⋊Q8)⋊47C2, (C2×D4).38(C2×C10), C22⋊C4.8(C2×C10), (C2×Q8).31(C2×C10), (C5×C42.C2)⋊29C2, (C5×C42⋊2C2)⋊20C2, (C5×C4⋊C4).252C22, (C2×C4).43(C22×C10), (C22×C4).74(C2×C10), (C5×C4.4D4).18C2, (C5×C22⋊C4).93C22, (C5×C22.D4).6C2, SmallGroup(320,1565)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 282 in 196 conjugacy classes, 142 normal (18 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×13], C22, C22 [×6], C5, C2×C4, C2×C4 [×12], C2×C4 [×2], D4, Q8 [×3], C23 [×2], C10, C10 [×2], C10 [×2], C42, C42 [×2], C22⋊C4 [×10], C4⋊C4 [×16], C22×C4 [×2], C2×D4, C2×Q8, C2×Q8 [×2], C20 [×13], C2×C10, C2×C10 [×6], C22⋊Q8 [×4], C22.D4 [×2], C4.4D4, C42.C2 [×2], C42⋊2C2 [×4], C4⋊Q8 [×2], C2×C20, C2×C20 [×12], C2×C20 [×2], C5×D4, C5×Q8 [×3], C22×C10 [×2], C22.57C24, C4×C20, C4×C20 [×2], C5×C22⋊C4 [×10], C5×C4⋊C4 [×16], C22×C20 [×2], D4×C10, Q8×C10, Q8×C10 [×2], C5×C22⋊Q8 [×4], C5×C22.D4 [×2], C5×C4.4D4, C5×C42.C2 [×2], C5×C42⋊2C2 [×4], C5×C4⋊Q8 [×2], C5×C22.57C24
Quotients:
C1, C2 [×15], C22 [×35], C5, C23 [×15], C10 [×15], C24, C2×C10 [×35], 2+ (1+4), 2- (1+4) [×2], C22×C10 [×15], C22.57C24, C23×C10, C5×2+ (1+4), C5×2- (1+4) [×2], C5×C22.57C24
Generators and relations
G = < a,b,c,d,e,f,g | a5=b2=c2=g2=1, d2=e2=f2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede-1=bd=db, geg=be=eb, bf=fb, bg=gb, fdf-1=cd=dc, ce=ec, cf=fc, cg=gc, gdg=bcd, fef-1=bce, fg=gf >
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 35)(2 31)(3 32)(4 33)(5 34)(6 160)(7 156)(8 157)(9 158)(10 159)(11 17)(12 18)(13 19)(14 20)(15 16)(21 27)(22 28)(23 29)(24 30)(25 26)(36 55)(37 51)(38 52)(39 53)(40 54)(41 47)(42 48)(43 49)(44 50)(45 46)(56 75)(57 71)(58 72)(59 73)(60 74)(61 67)(62 68)(63 69)(64 70)(65 66)(76 95)(77 91)(78 92)(79 93)(80 94)(81 87)(82 88)(83 89)(84 90)(85 86)(96 115)(97 111)(98 112)(99 113)(100 114)(101 107)(102 108)(103 109)(104 110)(105 106)(116 135)(117 131)(118 132)(119 133)(120 134)(121 127)(122 128)(123 129)(124 130)(125 126)(136 155)(137 151)(138 152)(139 153)(140 154)(141 147)(142 148)(143 149)(144 150)(145 146)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 20)(7 16)(8 17)(9 18)(10 19)(11 157)(12 158)(13 159)(14 160)(15 156)(26 34)(27 35)(28 31)(29 32)(30 33)(36 41)(37 42)(38 43)(39 44)(40 45)(46 54)(47 55)(48 51)(49 52)(50 53)(56 61)(57 62)(58 63)(59 64)(60 65)(66 74)(67 75)(68 71)(69 72)(70 73)(76 81)(77 82)(78 83)(79 84)(80 85)(86 94)(87 95)(88 91)(89 92)(90 93)(96 101)(97 102)(98 103)(99 104)(100 105)(106 114)(107 115)(108 111)(109 112)(110 113)(116 121)(117 122)(118 123)(119 124)(120 125)(126 134)(127 135)(128 131)(129 132)(130 133)(136 141)(137 142)(138 143)(139 144)(140 145)(146 154)(147 155)(148 151)(149 152)(150 153)
(1 115 35 96)(2 111 31 97)(3 112 32 98)(4 113 33 99)(5 114 34 100)(6 94 160 80)(7 95 156 76)(8 91 157 77)(9 92 158 78)(10 93 159 79)(11 82 17 88)(12 83 18 89)(13 84 19 90)(14 85 20 86)(15 81 16 87)(21 107 27 101)(22 108 28 102)(23 109 29 103)(24 110 30 104)(25 106 26 105)(36 135 55 116)(37 131 51 117)(38 132 52 118)(39 133 53 119)(40 134 54 120)(41 127 47 121)(42 128 48 122)(43 129 49 123)(44 130 50 124)(45 126 46 125)(56 155 75 136)(57 151 71 137)(58 152 72 138)(59 153 73 139)(60 154 74 140)(61 147 67 141)(62 148 68 142)(63 149 69 143)(64 150 70 144)(65 146 66 145)
(1 75 35 56)(2 71 31 57)(3 72 32 58)(4 73 33 59)(5 74 34 60)(6 120 160 134)(7 116 156 135)(8 117 157 131)(9 118 158 132)(10 119 159 133)(11 128 17 122)(12 129 18 123)(13 130 19 124)(14 126 20 125)(15 127 16 121)(21 67 27 61)(22 68 28 62)(23 69 29 63)(24 70 30 64)(25 66 26 65)(36 95 55 76)(37 91 51 77)(38 92 52 78)(39 93 53 79)(40 94 54 80)(41 87 47 81)(42 88 48 82)(43 89 49 83)(44 90 50 84)(45 86 46 85)(96 136 115 155)(97 137 111 151)(98 138 112 152)(99 139 113 153)(100 140 114 154)(101 141 107 147)(102 142 108 148)(103 143 109 149)(104 144 110 150)(105 145 106 146)
(1 55 35 36)(2 51 31 37)(3 52 32 38)(4 53 33 39)(5 54 34 40)(6 140 160 154)(7 136 156 155)(8 137 157 151)(9 138 158 152)(10 139 159 153)(11 148 17 142)(12 149 18 143)(13 150 19 144)(14 146 20 145)(15 147 16 141)(21 47 27 41)(22 48 28 42)(23 49 29 43)(24 50 30 44)(25 46 26 45)(56 81 75 87)(57 82 71 88)(58 83 72 89)(59 84 73 90)(60 85 74 86)(61 76 67 95)(62 77 68 91)(63 78 69 92)(64 79 70 93)(65 80 66 94)(96 127 115 121)(97 128 111 122)(98 129 112 123)(99 130 113 124)(100 126 114 125)(101 135 107 116)(102 131 108 117)(103 132 109 118)(104 133 110 119)(105 134 106 120)
(6 20)(7 16)(8 17)(9 18)(10 19)(11 157)(12 158)(13 159)(14 160)(15 156)(56 75)(57 71)(58 72)(59 73)(60 74)(61 67)(62 68)(63 69)(64 70)(65 66)(76 95)(77 91)(78 92)(79 93)(80 94)(81 87)(82 88)(83 89)(84 90)(85 86)(96 107)(97 108)(98 109)(99 110)(100 106)(101 115)(102 111)(103 112)(104 113)(105 114)(116 127)(117 128)(118 129)(119 130)(120 126)(121 135)(122 131)(123 132)(124 133)(125 134)(136 141)(137 142)(138 143)(139 144)(140 145)(146 154)(147 155)(148 151)(149 152)(150 153)
G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,35)(2,31)(3,32)(4,33)(5,34)(6,160)(7,156)(8,157)(9,158)(10,159)(11,17)(12,18)(13,19)(14,20)(15,16)(21,27)(22,28)(23,29)(24,30)(25,26)(36,55)(37,51)(38,52)(39,53)(40,54)(41,47)(42,48)(43,49)(44,50)(45,46)(56,75)(57,71)(58,72)(59,73)(60,74)(61,67)(62,68)(63,69)(64,70)(65,66)(76,95)(77,91)(78,92)(79,93)(80,94)(81,87)(82,88)(83,89)(84,90)(85,86)(96,115)(97,111)(98,112)(99,113)(100,114)(101,107)(102,108)(103,109)(104,110)(105,106)(116,135)(117,131)(118,132)(119,133)(120,134)(121,127)(122,128)(123,129)(124,130)(125,126)(136,155)(137,151)(138,152)(139,153)(140,154)(141,147)(142,148)(143,149)(144,150)(145,146), (1,21)(2,22)(3,23)(4,24)(5,25)(6,20)(7,16)(8,17)(9,18)(10,19)(11,157)(12,158)(13,159)(14,160)(15,156)(26,34)(27,35)(28,31)(29,32)(30,33)(36,41)(37,42)(38,43)(39,44)(40,45)(46,54)(47,55)(48,51)(49,52)(50,53)(56,61)(57,62)(58,63)(59,64)(60,65)(66,74)(67,75)(68,71)(69,72)(70,73)(76,81)(77,82)(78,83)(79,84)(80,85)(86,94)(87,95)(88,91)(89,92)(90,93)(96,101)(97,102)(98,103)(99,104)(100,105)(106,114)(107,115)(108,111)(109,112)(110,113)(116,121)(117,122)(118,123)(119,124)(120,125)(126,134)(127,135)(128,131)(129,132)(130,133)(136,141)(137,142)(138,143)(139,144)(140,145)(146,154)(147,155)(148,151)(149,152)(150,153), (1,115,35,96)(2,111,31,97)(3,112,32,98)(4,113,33,99)(5,114,34,100)(6,94,160,80)(7,95,156,76)(8,91,157,77)(9,92,158,78)(10,93,159,79)(11,82,17,88)(12,83,18,89)(13,84,19,90)(14,85,20,86)(15,81,16,87)(21,107,27,101)(22,108,28,102)(23,109,29,103)(24,110,30,104)(25,106,26,105)(36,135,55,116)(37,131,51,117)(38,132,52,118)(39,133,53,119)(40,134,54,120)(41,127,47,121)(42,128,48,122)(43,129,49,123)(44,130,50,124)(45,126,46,125)(56,155,75,136)(57,151,71,137)(58,152,72,138)(59,153,73,139)(60,154,74,140)(61,147,67,141)(62,148,68,142)(63,149,69,143)(64,150,70,144)(65,146,66,145), (1,75,35,56)(2,71,31,57)(3,72,32,58)(4,73,33,59)(5,74,34,60)(6,120,160,134)(7,116,156,135)(8,117,157,131)(9,118,158,132)(10,119,159,133)(11,128,17,122)(12,129,18,123)(13,130,19,124)(14,126,20,125)(15,127,16,121)(21,67,27,61)(22,68,28,62)(23,69,29,63)(24,70,30,64)(25,66,26,65)(36,95,55,76)(37,91,51,77)(38,92,52,78)(39,93,53,79)(40,94,54,80)(41,87,47,81)(42,88,48,82)(43,89,49,83)(44,90,50,84)(45,86,46,85)(96,136,115,155)(97,137,111,151)(98,138,112,152)(99,139,113,153)(100,140,114,154)(101,141,107,147)(102,142,108,148)(103,143,109,149)(104,144,110,150)(105,145,106,146), (1,55,35,36)(2,51,31,37)(3,52,32,38)(4,53,33,39)(5,54,34,40)(6,140,160,154)(7,136,156,155)(8,137,157,151)(9,138,158,152)(10,139,159,153)(11,148,17,142)(12,149,18,143)(13,150,19,144)(14,146,20,145)(15,147,16,141)(21,47,27,41)(22,48,28,42)(23,49,29,43)(24,50,30,44)(25,46,26,45)(56,81,75,87)(57,82,71,88)(58,83,72,89)(59,84,73,90)(60,85,74,86)(61,76,67,95)(62,77,68,91)(63,78,69,92)(64,79,70,93)(65,80,66,94)(96,127,115,121)(97,128,111,122)(98,129,112,123)(99,130,113,124)(100,126,114,125)(101,135,107,116)(102,131,108,117)(103,132,109,118)(104,133,110,119)(105,134,106,120), (6,20)(7,16)(8,17)(9,18)(10,19)(11,157)(12,158)(13,159)(14,160)(15,156)(56,75)(57,71)(58,72)(59,73)(60,74)(61,67)(62,68)(63,69)(64,70)(65,66)(76,95)(77,91)(78,92)(79,93)(80,94)(81,87)(82,88)(83,89)(84,90)(85,86)(96,107)(97,108)(98,109)(99,110)(100,106)(101,115)(102,111)(103,112)(104,113)(105,114)(116,127)(117,128)(118,129)(119,130)(120,126)(121,135)(122,131)(123,132)(124,133)(125,134)(136,141)(137,142)(138,143)(139,144)(140,145)(146,154)(147,155)(148,151)(149,152)(150,153)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,35)(2,31)(3,32)(4,33)(5,34)(6,160)(7,156)(8,157)(9,158)(10,159)(11,17)(12,18)(13,19)(14,20)(15,16)(21,27)(22,28)(23,29)(24,30)(25,26)(36,55)(37,51)(38,52)(39,53)(40,54)(41,47)(42,48)(43,49)(44,50)(45,46)(56,75)(57,71)(58,72)(59,73)(60,74)(61,67)(62,68)(63,69)(64,70)(65,66)(76,95)(77,91)(78,92)(79,93)(80,94)(81,87)(82,88)(83,89)(84,90)(85,86)(96,115)(97,111)(98,112)(99,113)(100,114)(101,107)(102,108)(103,109)(104,110)(105,106)(116,135)(117,131)(118,132)(119,133)(120,134)(121,127)(122,128)(123,129)(124,130)(125,126)(136,155)(137,151)(138,152)(139,153)(140,154)(141,147)(142,148)(143,149)(144,150)(145,146), (1,21)(2,22)(3,23)(4,24)(5,25)(6,20)(7,16)(8,17)(9,18)(10,19)(11,157)(12,158)(13,159)(14,160)(15,156)(26,34)(27,35)(28,31)(29,32)(30,33)(36,41)(37,42)(38,43)(39,44)(40,45)(46,54)(47,55)(48,51)(49,52)(50,53)(56,61)(57,62)(58,63)(59,64)(60,65)(66,74)(67,75)(68,71)(69,72)(70,73)(76,81)(77,82)(78,83)(79,84)(80,85)(86,94)(87,95)(88,91)(89,92)(90,93)(96,101)(97,102)(98,103)(99,104)(100,105)(106,114)(107,115)(108,111)(109,112)(110,113)(116,121)(117,122)(118,123)(119,124)(120,125)(126,134)(127,135)(128,131)(129,132)(130,133)(136,141)(137,142)(138,143)(139,144)(140,145)(146,154)(147,155)(148,151)(149,152)(150,153), (1,115,35,96)(2,111,31,97)(3,112,32,98)(4,113,33,99)(5,114,34,100)(6,94,160,80)(7,95,156,76)(8,91,157,77)(9,92,158,78)(10,93,159,79)(11,82,17,88)(12,83,18,89)(13,84,19,90)(14,85,20,86)(15,81,16,87)(21,107,27,101)(22,108,28,102)(23,109,29,103)(24,110,30,104)(25,106,26,105)(36,135,55,116)(37,131,51,117)(38,132,52,118)(39,133,53,119)(40,134,54,120)(41,127,47,121)(42,128,48,122)(43,129,49,123)(44,130,50,124)(45,126,46,125)(56,155,75,136)(57,151,71,137)(58,152,72,138)(59,153,73,139)(60,154,74,140)(61,147,67,141)(62,148,68,142)(63,149,69,143)(64,150,70,144)(65,146,66,145), (1,75,35,56)(2,71,31,57)(3,72,32,58)(4,73,33,59)(5,74,34,60)(6,120,160,134)(7,116,156,135)(8,117,157,131)(9,118,158,132)(10,119,159,133)(11,128,17,122)(12,129,18,123)(13,130,19,124)(14,126,20,125)(15,127,16,121)(21,67,27,61)(22,68,28,62)(23,69,29,63)(24,70,30,64)(25,66,26,65)(36,95,55,76)(37,91,51,77)(38,92,52,78)(39,93,53,79)(40,94,54,80)(41,87,47,81)(42,88,48,82)(43,89,49,83)(44,90,50,84)(45,86,46,85)(96,136,115,155)(97,137,111,151)(98,138,112,152)(99,139,113,153)(100,140,114,154)(101,141,107,147)(102,142,108,148)(103,143,109,149)(104,144,110,150)(105,145,106,146), (1,55,35,36)(2,51,31,37)(3,52,32,38)(4,53,33,39)(5,54,34,40)(6,140,160,154)(7,136,156,155)(8,137,157,151)(9,138,158,152)(10,139,159,153)(11,148,17,142)(12,149,18,143)(13,150,19,144)(14,146,20,145)(15,147,16,141)(21,47,27,41)(22,48,28,42)(23,49,29,43)(24,50,30,44)(25,46,26,45)(56,81,75,87)(57,82,71,88)(58,83,72,89)(59,84,73,90)(60,85,74,86)(61,76,67,95)(62,77,68,91)(63,78,69,92)(64,79,70,93)(65,80,66,94)(96,127,115,121)(97,128,111,122)(98,129,112,123)(99,130,113,124)(100,126,114,125)(101,135,107,116)(102,131,108,117)(103,132,109,118)(104,133,110,119)(105,134,106,120), (6,20)(7,16)(8,17)(9,18)(10,19)(11,157)(12,158)(13,159)(14,160)(15,156)(56,75)(57,71)(58,72)(59,73)(60,74)(61,67)(62,68)(63,69)(64,70)(65,66)(76,95)(77,91)(78,92)(79,93)(80,94)(81,87)(82,88)(83,89)(84,90)(85,86)(96,107)(97,108)(98,109)(99,110)(100,106)(101,115)(102,111)(103,112)(104,113)(105,114)(116,127)(117,128)(118,129)(119,130)(120,126)(121,135)(122,131)(123,132)(124,133)(125,134)(136,141)(137,142)(138,143)(139,144)(140,145)(146,154)(147,155)(148,151)(149,152)(150,153) );
G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,35),(2,31),(3,32),(4,33),(5,34),(6,160),(7,156),(8,157),(9,158),(10,159),(11,17),(12,18),(13,19),(14,20),(15,16),(21,27),(22,28),(23,29),(24,30),(25,26),(36,55),(37,51),(38,52),(39,53),(40,54),(41,47),(42,48),(43,49),(44,50),(45,46),(56,75),(57,71),(58,72),(59,73),(60,74),(61,67),(62,68),(63,69),(64,70),(65,66),(76,95),(77,91),(78,92),(79,93),(80,94),(81,87),(82,88),(83,89),(84,90),(85,86),(96,115),(97,111),(98,112),(99,113),(100,114),(101,107),(102,108),(103,109),(104,110),(105,106),(116,135),(117,131),(118,132),(119,133),(120,134),(121,127),(122,128),(123,129),(124,130),(125,126),(136,155),(137,151),(138,152),(139,153),(140,154),(141,147),(142,148),(143,149),(144,150),(145,146)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,20),(7,16),(8,17),(9,18),(10,19),(11,157),(12,158),(13,159),(14,160),(15,156),(26,34),(27,35),(28,31),(29,32),(30,33),(36,41),(37,42),(38,43),(39,44),(40,45),(46,54),(47,55),(48,51),(49,52),(50,53),(56,61),(57,62),(58,63),(59,64),(60,65),(66,74),(67,75),(68,71),(69,72),(70,73),(76,81),(77,82),(78,83),(79,84),(80,85),(86,94),(87,95),(88,91),(89,92),(90,93),(96,101),(97,102),(98,103),(99,104),(100,105),(106,114),(107,115),(108,111),(109,112),(110,113),(116,121),(117,122),(118,123),(119,124),(120,125),(126,134),(127,135),(128,131),(129,132),(130,133),(136,141),(137,142),(138,143),(139,144),(140,145),(146,154),(147,155),(148,151),(149,152),(150,153)], [(1,115,35,96),(2,111,31,97),(3,112,32,98),(4,113,33,99),(5,114,34,100),(6,94,160,80),(7,95,156,76),(8,91,157,77),(9,92,158,78),(10,93,159,79),(11,82,17,88),(12,83,18,89),(13,84,19,90),(14,85,20,86),(15,81,16,87),(21,107,27,101),(22,108,28,102),(23,109,29,103),(24,110,30,104),(25,106,26,105),(36,135,55,116),(37,131,51,117),(38,132,52,118),(39,133,53,119),(40,134,54,120),(41,127,47,121),(42,128,48,122),(43,129,49,123),(44,130,50,124),(45,126,46,125),(56,155,75,136),(57,151,71,137),(58,152,72,138),(59,153,73,139),(60,154,74,140),(61,147,67,141),(62,148,68,142),(63,149,69,143),(64,150,70,144),(65,146,66,145)], [(1,75,35,56),(2,71,31,57),(3,72,32,58),(4,73,33,59),(5,74,34,60),(6,120,160,134),(7,116,156,135),(8,117,157,131),(9,118,158,132),(10,119,159,133),(11,128,17,122),(12,129,18,123),(13,130,19,124),(14,126,20,125),(15,127,16,121),(21,67,27,61),(22,68,28,62),(23,69,29,63),(24,70,30,64),(25,66,26,65),(36,95,55,76),(37,91,51,77),(38,92,52,78),(39,93,53,79),(40,94,54,80),(41,87,47,81),(42,88,48,82),(43,89,49,83),(44,90,50,84),(45,86,46,85),(96,136,115,155),(97,137,111,151),(98,138,112,152),(99,139,113,153),(100,140,114,154),(101,141,107,147),(102,142,108,148),(103,143,109,149),(104,144,110,150),(105,145,106,146)], [(1,55,35,36),(2,51,31,37),(3,52,32,38),(4,53,33,39),(5,54,34,40),(6,140,160,154),(7,136,156,155),(8,137,157,151),(9,138,158,152),(10,139,159,153),(11,148,17,142),(12,149,18,143),(13,150,19,144),(14,146,20,145),(15,147,16,141),(21,47,27,41),(22,48,28,42),(23,49,29,43),(24,50,30,44),(25,46,26,45),(56,81,75,87),(57,82,71,88),(58,83,72,89),(59,84,73,90),(60,85,74,86),(61,76,67,95),(62,77,68,91),(63,78,69,92),(64,79,70,93),(65,80,66,94),(96,127,115,121),(97,128,111,122),(98,129,112,123),(99,130,113,124),(100,126,114,125),(101,135,107,116),(102,131,108,117),(103,132,109,118),(104,133,110,119),(105,134,106,120)], [(6,20),(7,16),(8,17),(9,18),(10,19),(11,157),(12,158),(13,159),(14,160),(15,156),(56,75),(57,71),(58,72),(59,73),(60,74),(61,67),(62,68),(63,69),(64,70),(65,66),(76,95),(77,91),(78,92),(79,93),(80,94),(81,87),(82,88),(83,89),(84,90),(85,86),(96,107),(97,108),(98,109),(99,110),(100,106),(101,115),(102,111),(103,112),(104,113),(105,114),(116,127),(117,128),(118,129),(119,130),(120,126),(121,135),(122,131),(123,132),(124,133),(125,134),(136,141),(137,142),(138,143),(139,144),(140,145),(146,154),(147,155),(148,151),(149,152),(150,153)])
Matrix representation ►G ⊆ GL8(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 37 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 37 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 37 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 39 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 0 | 8 | 0 | 32 |
38 | 30 | 0 | 0 | 0 | 0 | 0 | 0 |
38 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 15 | 12 | 26 | 0 | 0 | 0 | 0 |
38 | 15 | 15 | 29 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 31 | 7 | 39 | 0 |
0 | 0 | 0 | 0 | 34 | 10 | 0 | 39 |
0 | 0 | 0 | 0 | 26 | 0 | 10 | 34 |
0 | 0 | 0 | 0 | 0 | 26 | 7 | 31 |
1 | 39 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 40 | 0 | 40 | 0 | 0 | 0 | 0 |
1 | 40 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 31 | 0 | 1 |
0 | 0 | 0 | 0 | 31 | 0 | 40 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 31 | 7 | 40 | 0 |
0 | 0 | 0 | 0 | 34 | 10 | 0 | 40 |
G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,37],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,39,40,40,40,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,32,0,8,0,0,0,0,0,0,9,0,8,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,32],[38,38,0,38,0,0,0,0,30,3,15,15,0,0,0,0,0,0,12,15,0,0,0,0,0,0,26,29,0,0,0,0,0,0,0,0,31,34,26,0,0,0,0,0,7,10,0,26,0,0,0,0,39,0,10,7,0,0,0,0,0,39,34,31],[1,0,1,1,0,0,0,0,39,40,40,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,0,31,0,0,0,0,1,0,31,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0],[1,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,31,34,0,0,0,0,0,1,7,10,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40] >;
95 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | ··· | 4M | 5A | 5B | 5C | 5D | 10A | ··· | 10L | 10M | ··· | 10T | 20A | ··· | 20AZ |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 4 | ··· | 4 |
95 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | |||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | C10 | C10 | C10 | 2+ (1+4) | 2- (1+4) | C5×2+ (1+4) | C5×2- (1+4) |
kernel | C5×C22.57C24 | C5×C22⋊Q8 | C5×C22.D4 | C5×C4.4D4 | C5×C42.C2 | C5×C42⋊2C2 | C5×C4⋊Q8 | C22.57C24 | C22⋊Q8 | C22.D4 | C4.4D4 | C42.C2 | C42⋊2C2 | C4⋊Q8 | C10 | C10 | C2 | C2 |
# reps | 1 | 4 | 2 | 1 | 2 | 4 | 2 | 4 | 16 | 8 | 4 | 8 | 16 | 8 | 1 | 2 | 4 | 8 |
In GAP, Magma, Sage, TeX
C_5\times C_2^2._{57}C_2^4
% in TeX
G:=Group("C5xC2^2.57C2^4");
// GroupNames label
G:=SmallGroup(320,1565);
// by ID
G=gap.SmallGroup(320,1565);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,560,1149,568,3446,2571,436,6947,1242]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=g^2=1,d^2=e^2=f^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e^-1=b*d=d*b,g*e*g=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f^-1=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=b*c*d,f*e*f^-1=b*c*e,f*g=g*f>;
// generators/relations